


























14 R. A . DEVORE AND B. J. LUCIER 

which was introduced by Mallat (1989) (an interesting exception, presented 
by Stromberg (1981), apparently gave the first smooth orthogonal wavelets). 
We begin with a brief overview of multi-resolution that we wil l expand on 
in later sections. 

Let cp 6 L2 (M d ) and let <S : = S(</>) be the shift-invariant subspace of 
L2(M.d) generated by </>. That is, S(4>) is the L 2 ( R d ) closure of finite linear 
combinations of <f>  and its shifts <f>(  • + j), j E Zd. By dilation, we form the 
scale of spaces 

Sk : = {S(2k • ) | S € <S}. (3.1.1) 

Then Sk is invariant under dyadic shifts j2~k, j € Zd. In the construction 
of Haar functions, we had d = 1, and «S was the space of piecewise-constant 
functions with integer breakpoints. That is, <S = S(<f>) with <j>  := X := X[o,i] -
Other examples for the reader to keep in mind, which result in smoother 
wavelets, are to take for S the space of cardinal spline functions of order r 
in L2 ( R ). A cardinal spline is a piecewise polynomial function defined on 
R, of local degree < r, that has breakpoints at the integers and has global 
smoothness Cr~2. Then <S = S(Nr) with iV r the (nonzero) cardinal B-spline 
that has knots at 0 , 1 , . . ., r. These B-splines are easiest to define recursively: 
Ni :=  X and Nr := i V r - i * Ni, with the usual operation of convolution 

f*g(x) := / f(x-y)g(y)dy. 

For example, is a hat function, ./V3 a C 1 piecewise quadratic, and so on. In 
the multi-variate case, the primary examples to keep in mind are the tensor 
product of uni-variate B-splines: N(x) := N(x\,... ,Xd) •= N(xi) • • • N(xd), 
and the box splines, which wil l be introduced and discussed later. 

Multi-resolution begins with certain assumptions on the scale of spaces <S k 

and shows under these assumptions how to construct an orthogonal wavelet 
if) from the generating function (f>. The usual assumptions are: 

( i ) «Sfc C Sk + \ k€Z; 

(i i ) [ J ^ = L 2 ( R d ) ; 

(hi) D 5* = {°}; 
( iv ) {cf)( - — j)}j eZd forms an L2(M d)-stable basis for <S. (3.1.2) 

We have already seen the role of (i i ) and (iii ) in the context of Haar decom-
positions. The assumption ( iv ) means that there exist positive constants C\ 
and C2 such that each S € S has a unique representation 

( i ) S = £ c 0 > (- - j ) , and 
jezd 
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(i i ) C i | | 5 | |L 2 ( R d ) < ( £ | c ( j ) |2 ) ' < C 2 | | 5 | |i 2 ( R e l ) . (3.1.3) 

I f </> has L2(M d)-stable shifts then it follows by a change of variables that 
for each k € Z, the function 2kd/2cp(2k • ) has L 2(Ed) -s table 2~kZd shifts. We 
shall mention later how the assumption ((3.1.2)(iv)) can be weakened. 

Assumption ((3.1.2)(i)) is a severe restriction on the underlying func-
tion <p. Because each space <Sfc is obtained from <S by dilation, we see that 
((3.1.2)(i)) is satisfied if and only if S C S1, or, equivalently, if cj> is in 
the space Sl . From the Li(Rd)-stability of the set {cf>{  • — j)}j ez

d' this is 
equivalent to 

<t>(x)=  $ > 0 X 2 x - j ) (3.1.4) 

for some sequence (a(j)) 6 £2{Zd). Equation (3.1.4) is called the refinement 
equation for 0, since it says that 4> can be expressed as a linear combination 
of the scaled functions 0(2- — j), which are at the finer dyadic level. We 
shall discuss the refinement equation in more detail later and for now only 
point out that this equation is well known for the B-spline of order r, for 
which it takes the form 

Nr(x) = 2-r+1J2( \ )Nr(2x-j). (3.1.5) 
j=o  v J J 

Because of ((3.1.2)(i)), the wavelet space 

w — s1es° 

is a subspace of S1. By dilation, we obtain the scaled wavelet spaces Wk, 

k € Z. Then, Wk is orthogonal to <Sfc and 

Since C <Sfc for j < k, it follows that Wj and Wk are orthogonal. Prom 

this and ((3.1.2)(ii)) and ((3.1.2)( i i i )), we obtain 

L2(R
d) = 0VT f c . (3.1.7) 

fcez 

We find wavelets by showing that W is shift invariant and finding its 
generators. For example, when d = 1, W is a principal shift-invariant space, 
that is it can be generated by one element ip, i.e. W = S(ip). Of course, 
there are many such generators tp for W. In the multi-variate case, the space 
W wil l be generated by 2d — 1 such functions. 

We find an orthogonal wavelet in one dimension by determining a ip whose 
shifts form an orthonormal basis for W. Indeed, once such a function ip is 
found, the scaled functions iftj^ : = 2k/2tp(2k-— j) wil l then form an orthonor-
mal basis for L,2(M). 




















































































